Jan Verschelde
Homotopies for polynomial systems provide computational evidence for a challenging instance of a conjecture about whether all solutions are real. The implementation of SAGBI homotopies involves polyhedral continuation, flat deformation and cheater's homotopy. The numerical difficulties are overcome if we work in the true synthetic spirit of the Schubert calculus by selecting the numerically most favorable equations to represent the geometric problem. Since a well-conditioned polynomial system allows perturbations on the input data without destroying the reality of the solutions we obtain not just one instance, but a whole manifold of systems that satisfy the conjecture. Also an instance that involves totally positive matrices has been verified. The optimality of the solving procedure is a promising first step towards the development of numerically stable algorithms for the pole placement problem in linear systems theory.