Loukas Grafakos and Atanas Stefanov
\newcommand{\pv}{p.v.} \newcommand{\Om}{\Omega} \newcommand{\nf}{\infty} \newcommand{\sn}{\mathbf S^{n-1}} Convolution type Calder\'on-Zygmund singular integral operators with rough kernels $\pv \Om(x)/|x|^n$ are studied. A condition on $\Om$ implying that the corresponding singular integrals and maximal singular integrals map $L^p \to L^p$ for $1