Commutative Algebra and Noncommutative Algebraic Geometry, II MSRI Publications Volume 68, 2015

On the subadditivity problem for maximal shifts in free resolutions

JÜRGEN HERZOG AND HEMA SRINIVASAN

We present some partial results regarding subadditivity of maximal shifts in finite graded free resolutions.

Let *K* be field, $S = K[x_1, \ldots, x_n]$ the polynomial ring over *K* in the indeterminates x_1, \ldots, x_n and $I \subset S$ a graded ideal. Let (F , ∂) be a graded free *S*-resolution of $R = S/I$. Each free module \mathbb{F}_a in the resolution is of the form $\mathbb{F}_a = \bigoplus_j S(-j)^{b_{aj}}$. We set

$$
t_a(\mathbb{F}) = \max\{j : b_{aj} \neq 0\}.
$$

In the case that \mathbb{F} is the graded minimal free resolution of *I* we write $t_a(I)$ instead of $t_a(\mathbb{F})$.

We say \mathbb{F} satisfies the *subadditivity condition*, if $t_{a+b}(\mathbb{F}) \leq t_a(\mathbb{F}) + t_b(\mathbb{F})$.

Remark 1. The Taylor complex and the Scarf complex satisfy the subadditivity condition. Indeed, both complexes are cellular resolutions supported on a simplicial complex. From this fact the assertion follows immediately.

The minimal resolution of a graded algebra *S*/*I* does not always satisfy the subadditivity condition as pointed out in [\[Avramov et al. 2015\]](#page-4-0). Additional assumptions on the ideal *I* are required. Somewhat weaker inequalities can be shown in certain ranges of *a* and *b*, and in particular the inequality $t_{a+1}(I) \leq$ $t_a(I) + t_1(I)$ if $R = S/I$ is Koszul and $a \le$ height *I*; see [\[Avramov et al. 2015,](#page-4-0) Theorem 4.1]. Another case of interest for which the subadditivity condition holds is when dim $S/I \leq 1$ and $a + b = n$ as shown by David Eisenbud, Craig Huneke and Bernd Ulrich in [\[Eisenbud et al. 2006,](#page-4-1) Theorem 4.1]. No counterexample is known for monomial ideals.

For a general graded ideal *I* we have the following result.

MSC2010: 13A02, 13D02.

The paper was written while the authors were visiting MSRI at Berkeley. They wish to acknowledge the support, hospitality and inspiring atmosphere of this institution.

Keywords: graded free resolutions, monomial ideals.

Proposition 2. Let $I \subset S$ be a graded ideal, \mathbb{F} the graded minimal free resolution *of S*/*I . Suppose there exists a homogeneous basis f*1, . . . , *f^r of F^a such that*

$$
\partial(\mathbb{F}_{a+1}) \subset \bigoplus_{i=1}^{r-1} Sf_i.
$$

Then deg $f_r \le t_{a-1} + t_1$.

Proof. We denote by $(\mathbb{F}^*, \partial^*)$ the complex $\text{Hom}_S(\mathbb{F}, S)$ which is dual to \mathbb{F} . For any basis h_1, \ldots, h_l of \mathbb{F}_b we denote by h_i^* ^{*}/_{*i*} the basis element of \mathbb{F}_b^* with h_i^* $i^*(h_j) = 1$ if $j = i$ and h_i^* $i^*(h_j) = 0$, otherwise. Then h_1^* i_1^*, \ldots, h_l^* ^{*}/_{*l*} is a basis of \mathbb{F}_b^* $\frac{k}{b}$, the so-called dual basis of h_1, \ldots, h_l .

Our assumption implies that $\partial^*(f_r^*) = 0$. This implies that f_r^* is a generator of $H^a(\mathbb{F}^*) = \text{Ext}^a_S(S/I, S)$, and hence $If^*_r = 0$ in $H^a(\mathbb{F}^*)$, since $\text{Ext}^a(S/I, S)$ is an *S*/*I*-module. On the other hand, if g_1, \ldots, g_m is a basis of \mathbb{F}_{a-1} and $\partial(f_r)$ = $c_1g_1+\cdots+c_ng_m$, then $\partial^*(g_i^*)$ i^* = $c_i f^* + m_i$ where each m_i is a linear combination of the remaining basis elements of \mathbb{F}_a^* . Let $c \in I$ be a generator of maximal degree. Then by definition, deg $c = t_1(I)$. Since $If_r^* = 0$ in $H^a(\mathbb{F}^*)$, there exist homogeneous elements $s_i \in S$ such that $cf_r^* = \sum_{i=1}^m s_i(c_i f_r^* + m_i)$. This is only possible if $t_1(I) = \deg c_i + \deg s_i$ for some *i*. In particular, $\deg c_i \leq t_1(I)$. It follows that deg $f_r = \deg c_i + \deg g_i \leq t_1(I) + t_{a-1}(I)$, as desired.

Jason McCullough [\[2012,](#page-4-2) Theorem 4.4] shows $t_p(I) \leq \max_a \{t_a(I) + t_{p-a}(I)\},$ where $p = \text{proj dim } S/I$. As an immediate consequence of [Proposition 2](#page-0-0) we obtain the following improvement of McCullough's inequality:

Corollary 3. *Let I* ⊂ *S be a graded ideal of projective dimension p. Then*

$$
t_p(I) \le t_{p-1}(I) + t_1(I).
$$

For monomial ideals one even has the following corollary.

Corollary 4. Let *I* be a monomial ideal. Then $t_a(I) \leq t_{a-1}(I) + t_1(I)$ for all $a \geq 1$.

For the proof of this and the following results we will use the restriction lemma as given in [\[Herzog et al. 2004,](#page-4-3) Lemma 4.4]: let *I* be a monomial ideal with multigraded (minimal) free resolution \mathbb{F} and let $\alpha \in \mathbb{N}^n$. Then the restricted complex $\mathbb{F}^{\leq \alpha}$ which is the subcomplex of \mathbb{F} for which $(\mathbb{F}^{\leq \alpha})_i$ is spanned by those basis elements of \mathbb{F}_i whose multidegree is componentwise less than or equal to α , is a (minimal) multigraded free resolution of the monomial ideal $I^{\leq \alpha}$ which is generated by all monomials $x^b \in I$ with $b \leq \alpha$, componentwise.

Proof of [Corollary 4.](#page-1-0) Let F the minimal multigraded free *S*-resolution of *S*/*I*, and let $f \in F_a$ be a homogeneous element of multidegree $\alpha \in \mathbb{N}^n$ whose total degree is $t_a(I)$. We apply the restriction lemma and consider the restricted complex $\mathbb{F}^{\leq \alpha}$.

Let f_1, \ldots, f_r be a homogeneous basis of $(\mathbb{F}^{\leq \alpha})_a$ with $f_r = f$. Since there is no basis element of $(\mathbb{F}^{\leq \alpha})_{a+1}$ of a multidegree which is coefficient bigger than α , and since the resolution $\mathbb{F}^{\leq \alpha}$ is minimal, it follows that $\partial ((\mathbb{F}^{\leq \alpha})_{a+1}) \subset \bigoplus_{i=1}^{r-1} Sf_i$. Thus we may apply [Proposition 2](#page-0-0) and deduce that $t_a(I^{\leq \alpha}) \leq t_{a-1}(I^{\leq \alpha}) + t_1(I^{\leq \alpha})$. Since $t_a(I) = t_a(I^{\leq \alpha})$, $t_{a-1}(I^{\leq \alpha}) \leq t_{a-1}(I)$ and $t_1(I^{\leq \alpha}) \leq t_1(I)$, the assertion follows. \Box

The preceding corollary generalizes a result by Oscar Fernández-Ramos and Philippe Gimenez [\[2014,](#page-4-4) Corollary 1.9] who showed that $t_a \leq t_{a-1} + 2$ for any monomial ideal generated in degree 2.

Let $I \subset S$ be a monomial ideal, and $\alpha, \beta \in \mathbb{N}^n$ be two integer vectors. We say that (α, β) is a *covering pair* for *I*, if

$$
I = I^{\leq \alpha} + I^{\leq \beta}.
$$

Theorem 5. *Let* (α, β) *be a covering pair for the monomial ideal I*, *and suppose that* $p = \text{proj dim } S/I^{\leq \alpha}$ *and* $q = \text{proj dim } S/I^{\leq \beta}$. *Then* $\text{proj dim } S/I \leq p + q$, *and for all integers a* ≤ proj dim *S*/*I we have*

$$
t_a(I) \le \max\{t_i(I) + t_j(I) : i + j = a, i \le p, j \le q\}.
$$

Proof. We consider the complex $\mathbb{G} = \mathbb{F}^{\leq \alpha} * \mathbb{F}^{\leq \beta}$ defined in [\[Herzog 2007\]](#page-4-5). Then G is a multigraded free resolution of $I^{\leq \alpha} + I^{\leq \beta}$ of length $p + q$, and hence a multigraded free resolution of *I*. In particular, it follows that proj dim $S/I \leq p+q$.

By construction,

$$
\mathbb{G}_a = \bigoplus_{i+j=a} (\mathbb{F}^{\leq \alpha})_i * (\mathbb{F}^{\leq \beta})_j,
$$

where each direct summand $(\mathbb{F}^{\leq \alpha})_i * (\mathbb{F}^{\leq \beta})_j$ is a free multigraded *S*-module. If f_1, \ldots, f_s is a multihomogeneous basis of $(\mathbb{F}^{\leq \alpha})_i$ and g_1, \ldots, g_r a multihomogeneous basis of $(\mathbb{F}^{\leq \beta})_j$, then the symbols $f_k * g_l$ with $k = 1, \ldots, s$ and $l = 1, \ldots, r$ establish a multihomogeneous basis of $(\mathbb{F}^{\leq \alpha})_i * (\mathbb{F}^{\leq \beta})_j$, and if σ_k is the multidegree of f_k and τ_l is the multidegree of g_l , then $\sigma_k \vee \tau_l$ is the multidegree of $f_k * g_l$, where for two integer vectors γ , $\delta \in \mathbb{N}^n$ we denote by $\gamma \vee \delta$ the integer vector which is obtained from γ and δ by taking componentwise the maximum. It follows that the element of maximal (total) degree in $(\mathbb{F}^{\leq \alpha})_i \ast (\mathbb{F}^{\leq \beta})_j$ has degree less than or equal to t_i ($\mathbb{F}^{\leq \alpha}$) + t_j ($\mathbb{F}^{\leq \beta}$). Consequently we obtain

$$
t_a(I) = t_a(\mathbb{F}) \le t_a(\mathbb{G}) \le \max\{t_i(\mathbb{F}^{\le \alpha}) + t_j(\mathbb{F}^{\le \beta}) : i + j = a, i \le p, j \le q\}
$$

$$
\le \max\{t_i(I) + t_j(I) : i + j = a, i \le p, j \le q\}.
$$

The following example illustrates that [Theorem 5](#page-2-0) leads to inequalities which are not implied by [Corollary 3.](#page-1-1)

248 JÜRGEN HERZOG AND HEMA SRINIVASAN

Example 6. Set $S = k[x, y, z, u, v, w, a]$ and let $I \subset S$ be given by

 $I = (x^2w^2v^2, a^2x^3y^2u^2w^2, a^2z^2u^2, u^2y^2z^3, x^3y^2z^2, x^5, y^5, z^5, u^5, w^5, v^6, a^6).$

We choose $\alpha = (5, 5, 5, 5, 0, 0, 0)$ and $\beta = (3, 3, 2, 2, 6, 5, 6)$. Then

$$
I^{\leq \alpha} = (x^5, y^5, z^5, u^5, x^3 y^3 z^2, u^2 y^2 z^3),
$$

\n
$$
I^{\leq \beta} = (w^5, v^6, a^6, x^2 w^2 v^2, a^2 x^3 y^2 u^2 w^2, a^2 z^2 u^2).
$$

Here, $p = 4$, $q = 5$ and proj dim $S/I = 7$. Thus by [Theorem 5,](#page-2-0)

$$
t_7(I) \le \max\{t_2(I) + t_5(I), t_3(I) + t_4(I)\}.
$$

Corollary 7. Let $s = p + q - a$. Then with the notation and assumptions of *[Theorem 5](#page-2-0) we have*

$$
t_a(I) \le \max\{t_i(I) + t_{a-i}(I) : p - s \le i \le p\}.
$$

As a special case one obtains:

Corollary 8. Let $I \subset S = K[x_1, \ldots, x_n]$ be a monomial ideal with dim $S/I = 0$ *which is minimally generated by m* ≤ 2*n* − 6 *monomials*, *and let a be an integer with* $(m+4)/2 \le a \le n$. *Then*

 $t_a(I) \leq \min\{t_1(I) + t_{a-1}(I), \max\{t_i(I) + t_{a-i}(I) : p - (m-a) \leq i \leq \min\{p, a/2\}\}\}$

for all $p = m - a + 2, \ldots, a - 2$.

Proof. Due to [Corollary 3](#page-1-1) we only need to show that

$$
t_a(I) \le \max\{t_i(I) + t_{a-i}(I) : p + a - m \le i \le \min\{p, a/2\}\}.
$$

Since dim $S/I = 0$, among the minimal set of generators $G(I)$ of *I* are the pure powers $x_1^{a_1}, \ldots, x_n^{a_n}$ for suitable $a_i > 0$. We let $\alpha = (a_1, \ldots, a_p, 0, \ldots, 0)$. Then $I^{\leq \alpha}$ has all its generators in $K[x_1, \ldots, x_p]$ so that proj dim $\hat{S}/I = p$. Let *J* be the ideal which is generated by the set of monomials $G(I) \setminus \{x_1^{a_1}, \ldots, x_p^{a_p}\}$, and let x^{β} be the least common multiple of the generators of *J*. Then $J = I^{\leq \beta}$ and (α, β) is a covering pair for *I*. Since *J* is generated by $m - p$ elements it follows that $q = \text{proj} \dim S / J \leq m - p$. Hence the desired inequality follows from [Corollary 7.](#page-3-0) The conditions on the integers *a*, *m* and *p* only make sure that *i* ≥ 2 and $a-i$ ≥ 2 for all *i* with $p+a-m \le i \le p$, and that $m-a+2 \le a-2$. □

The bound in [Corollary 8](#page-3-1) is a partial improvement of the results in [\[Eisenbud](#page-4-1) [et al. 2006\]](#page-4-1) and [\[McCullough 2012\]](#page-4-2) since the bound is also valid for certain *a* <*n*. For $a = n$, it is weaker than the one in [\[Eisenbud et al. 2006\]](#page-4-1) for zero dimensional rings and is stronger than the one in [\[McCullough 2012\]](#page-4-2). For example, if $n = 7$ and $m = 8$ one has $t_6 \le t_1 + t_2 + t_3$, and if $6 \le n \le 20$ and $m \le 2n - 6$, then one has $t_7 \le t_1 + t_2 + t_4$.

Remark 9. With the same methods as applied in the proof of [Theorem 5](#page-2-0) one can show the following statement: let $I \subset S$ be a monomial ideal with graded minimal free resolution \mathbb{F} , and $f_i \in F_{a_i}$ multihomogeneous basis elements of multidegree α_i for $i = 1, ..., r$. Assume that $I = \sum_{i=1}^r I^{\leq \alpha_i}$. Then

$$
t_{a_1+a_2+\cdots+a_r}(I) \leq t_{a_1}(I) + t_{a_2}(I) + \cdots + t_{a_r}(I).
$$

To satisfy the condition $I = \sum_{i=1}^{r} I^{\leq \alpha_i}$ requires in general that either *r* is big enough or that the α_i are large enough (with respect to the partial order given by componentwise comparison). Here is an example with $r = 2$ to which [Remark 9](#page-3-2) applies: let

$$
I = (x^2 w^2 v^2, a^2 x^3 y^2 u^2 w^2, a^2 z^2 u^2, a^2 y^2 z^3, x^3 y^2 z^2) \subset k[x, y, z, w, u, v, a].
$$

The Betti numbers of R/I are 1, 5, 8, 5, 1. Even though the Betti sequence is symmmetric, the ideal *I* is not Gorenstein, since it is of height 2 and projective dimension 4. The two multidegrees in F_2 which form a covering pair for *I* are $(3, 2, 2, 2, 2, 0, 2)$ and $(2, 2, 3, 2, 2, 2, 0)$. In this example we have $t_1 = 11$, $t_2 =$ 13, $t_3 = 15$, $t_4 = 16$ and we clearly have $t_i \le t_2 + t_2$.

References

- [Avramov et al. 2015] L. L. Avramov, A. Conca, and S. B. Iyengar, ["Subadditivity of syzygies of](http://dx.doi.org/10.1007/s00208-014-1060-4) [Koszul algebras",](http://dx.doi.org/10.1007/s00208-014-1060-4) *Math. Ann.* 361:1-2 (2015), 511–534.
- [Eisenbud et al. 2006] D. Eisenbud, C. Huneke, and B. Ulrich, ["The regularity of Tor and graded](http://dx.doi.org/10.1353/ajm.2006.0022) [Betti numbers",](http://dx.doi.org/10.1353/ajm.2006.0022) *Amer. J. Math.* 128:3 (2006), 573–605.
- [Fernández-Ramos and Gimenez 2014] O. Fernández-Ramos and P. Gimenez, ["Regularity 3 in](http://dx.doi.org/10.1007/s10801-013-0473-6) [edge ideals associated to bipartite graphs",](http://dx.doi.org/10.1007/s10801-013-0473-6) *J. Algebraic Combin.* 39:4 (2014), 919–937.
- [Herzog 2007] J. Herzog, ["A generalization of the Taylor complex construction",](http://dx.doi.org/10.1080/00927870601139500) *Comm. Algebra* 35:5 (2007), 1747–1756.
- [Herzog et al. 2004] J. Herzog, T. Hibi, and X. Zheng, "Monomial ideals whose powers have a linear resolution", *Math. Scand.* 95:1 (2004), 23–32.
- [McCullough 2012] J. McCullough, ["A polynomial bound on the regularity of an ideal in terms of](http://dx.doi.org/10.4310/MRL.2012.v19.n3.a4) [half of the syzygies",](http://dx.doi.org/10.4310/MRL.2012.v19.n3.a4) *Math. Res. Lett.* 19:3 (2012), 555–565.

