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On the subadditivity problem for maximal
shifts in free resolutions

JÜRGEN HERZOG AND HEMA SRINIVASAN

We present some partial results regarding subadditivity of maximal shifts in
finite graded free resolutions.

Let K be field, S = K [x1, . . . , xn] the polynomial ring over K in the inde-
terminates x1, . . . , xn and I ⊂ S a graded ideal. Let (F, ∂) be a graded free
S-resolution of R = S/I . Each free module Fa in the resolution is of the form
Fa =

⊕
j S(− j)baj . We set

ta(F)=max{ j : baj 6= 0}.

In the case that F is the graded minimal free resolution of I we write ta(I ) instead
of ta(F).

We say F satisfies the subadditivity condition, if ta+b(F)≤ ta(F)+ tb(F).

Remark 1. The Taylor complex and the Scarf complex satisfy the subadditiv-
ity condition. Indeed, both complexes are cellular resolutions supported on a
simplicial complex. From this fact the assertion follows immediately.

The minimal resolution of a graded algebra S/I does not always satisfy the
subadditivity condition as pointed out in [Avramov et al. 2015]. Additional
assumptions on the ideal I are required. Somewhat weaker inequalities can be
shown in certain ranges of a and b, and in particular the inequality ta+1(I ) ≤
ta(I )+ t1(I ) if R = S/I is Koszul and a ≤ height I ; see [Avramov et al. 2015,
Theorem 4.1]. Another case of interest for which the subadditivity condition holds
is when dim S/I ≤ 1 and a+b= n as shown by David Eisenbud, Craig Huneke
and Bernd Ulrich in [Eisenbud et al. 2006, Theorem 4.1]. No counterexample is
known for monomial ideals.

For a general graded ideal I we have the following result.
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Proposition 2. Let I ⊂ S be a graded ideal, F the graded minimal free resolution
of S/I . Suppose there exists a homogeneous basis f1, . . . , fr of Fa such that

∂(Fa+1)⊂

r−1⊕
i=1

S fi .

Then deg fr ≤ ta−1+ t1.

Proof. We denote by (F∗, ∂∗) the complex HomS(F, S)which is dual to F. For any
basis h1, . . . , hl of Fb we denote by h∗i the basis element of F∗b with h∗i (h j )= 1 if
j = i and h∗i (h j )= 0, otherwise. Then h∗1, . . . , h∗l is a basis of F∗b, the so-called
dual basis of h1, . . . , hl .

Our assumption implies that ∂∗( f ∗r )= 0. This implies that f ∗r is a generator
of Ha(F∗)= ExtaS(S/I, S), and hence I f ∗r = 0 in Ha(F∗), since Exta(S/I, S) is
an S/I -module. On the other hand, if g1, . . . , gm is a basis of Fa−1 and ∂( fr )=

c1g1+· · ·+cngm , then ∂∗(g∗i )= ci f ∗+mi where each mi is a linear combination
of the remaining basis elements of F∗a . Let c ∈ I be a generator of maximal
degree. Then by definition, deg c = t1(I ). Since I f ∗r = 0 in Ha(F∗), there exist
homogeneous elements si ∈ S such that c f ∗r =

∑m
i=1 si (ci f ∗r +mi ). This is only

possible if t1(I ) = deg ci + deg si for some i . In particular, deg ci ≤ t1(I ). It
follows that deg fr = deg ci + deg gi ≤ t1(I )+ ta−1(I ), as desired. �

Jason McCullough [2012, Theorem 4.4] shows tp(I )≤maxa{ta(I )+tp−a(I )},
where p = proj dim S/I . As an immediate consequence of Proposition 2 we
obtain the following improvement of McCullough’s inequality:

Corollary 3. Let I ⊂ S be a graded ideal of projective dimension p. Then

tp(I )≤ tp−1(I )+ t1(I ).

For monomial ideals one even has the following corollary.

Corollary 4. Let I be a monomial ideal. Then ta(I ) ≤ ta−1(I )+ t1(I ) for all
a ≥ 1.

For the proof of this and the following results we will use the restriction
lemma as given in [Herzog et al. 2004, Lemma 4.4]: let I be a monomial ideal
with multigraded (minimal) free resolution F and let α ∈ Nn . Then the restricted
complex F≤α which is the subcomplex of F for which (F≤α)i is spanned by those
basis elements of Fi whose multidegree is componentwise less than or equal to
α, is a (minimal) multigraded free resolution of the monomial ideal I≤α which
is generated by all monomials xb

∈ I with b≤ α, componentwise.

Proof of Corollary 4. Let F the minimal multigraded free S-resolution of S/I , and
let f ∈ Fa be a homogeneous element of multidegree α ∈Nn whose total degree
is ta(I ). We apply the restriction lemma and consider the restricted complex F≤α .
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Let f1, . . . , fr be a homogeneous basis of (F≤α)a with fr = f . Since there is no
basis element of (F≤α)a+1 of a multidegree which is coefficient bigger than α,
and since the resolution F≤α is minimal, it follows that ∂((F≤α)a+1)⊂

⊕r−1
i=1 S fi .

Thus we may apply Proposition 2 and deduce that ta(I≤α)≤ ta−1(I≤α)+t1(I≤α).
Since ta(I ) = ta(I≤α), ta−1(I≤α) ≤ ta−1(I ) and t1(I≤α) ≤ t1(I ), the assertion
follows. �

The preceding corollary generalizes a result by Oscar Fernández-Ramos and
Philippe Gimenez [2014, Corollary 1.9] who showed that ta ≤ ta−1+ 2 for any
monomial ideal generated in degree 2.

Let I ⊂ S be a monomial ideal, and α, β ∈Nn be two integer vectors. We say
that (α, β) is a covering pair for I , if

I = I≤α + I≤β .

Theorem 5. Let (α, β) be a covering pair for the monomial ideal I , and suppose
that p = proj dim S/I≤α and q = proj dim S/I≤β . Then proj dim S/I ≤ p+ q,
and for all integers a ≤ proj dim S/I we have

ta(I )≤max{ti (I )+ t j (I ) : i + j = a, i ≤ p, j ≤ q}.

Proof. We consider the complex G= F≤α ∗ F≤β defined in [Herzog 2007]. Then
G is a multigraded free resolution of I≤α + I≤β of length p+ q, and hence a
multigraded free resolution of I . In particular, it follows that proj dim S/I ≤ p+q .

By construction,
Ga =

⊕
i+ j=a

(F≤α)i ∗ (F
≤β) j ,

where each direct summand (F≤α)i ∗ (F≤β) j is a free multigraded S-module.
If f1, . . . , fs is a multihomogeneous basis of (F≤α)i and g1, . . . , gr a multiho-
mogeneous basis of (F≤β) j , then the symbols fk ∗ gl with k = 1, . . . , s and
l = 1, . . . , r establish a multihomogeneous basis of (F≤α)i ∗ (F≤β) j , and if σk is
the multidegree of fk and τl is the multidegree of gl , then σk∨τl is the multidegree
of fk ∗gl , where for two integer vectors γ, δ ∈Nn we denote by γ ∨δ the integer
vector which is obtained from γ and δ by taking componentwise the maximum.
It follows that the element of maximal (total) degree in (F≤α)i ∗ (F≤β) j has
degree less than or equal to ti (F≤α)+ t j (F

≤β). Consequently we obtain

ta(I )= ta(F)≤ ta(G)≤max{ti (F≤α)+ t j (F
≤β) : i + j = a, i ≤ p, j ≤ q}

≤max{ti (I )+ t j (I ) : i + j = a, i ≤ p, j ≤ q}. �

The following example illustrates that Theorem 5 leads to inequalities which
are not implied by Corollary 3.
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Example 6. Set S = k[x, y, z, u, v, w, a] and let I ⊂ S be given by

I = (x2w2v2, a2x3 y2u2w2, a2z2u2, u2 y2z3, x3 y2z2, x5, y5, z5, u5, w5, v6, a6).

We choose α = (5, 5, 5, 5, 0, 0, 0) and β = (3, 3, 2, 2, 6, 5, 6). Then

I≤α = (x5, y5, z5, u5, x3 y3z2, u2 y2z3),

I≤β = (w5, v6, a6, x2w2v2, a2x3 y2u2w2, a2z2u2).

Here, p = 4, q = 5 and proj dim S/I = 7. Thus by Theorem 5,

t7(I )≤max{t2(I )+ t5(I ), t3(I )+ t4(I )}.

Corollary 7. Let s = p + q − a. Then with the notation and assumptions of
Theorem 5 we have

ta(I )≤max{ti (I )+ ta−i (I ) : p− s ≤ i ≤ p}.

As a special case one obtains:

Corollary 8. Let I ⊂ S = K [x1, . . . , xn] be a monomial ideal with dim S/I = 0
which is minimally generated by m ≤ 2n− 6 monomials, and let a be an integer
with (m+ 4)/2≤ a ≤ n. Then

ta(I )≤min
{
t1(I )+ta−1(I ),max

{
ti (I )+ta−i (I ) : p−(m−a)≤i≤ min{p, a/2}

}}
for all p = m− a+ 2, . . . , a− 2.

Proof. Due to Corollary 3 we only need to show that

ta(I )≤max
{
ti (I )+ ta−i (I ) : p+ a−m ≤ i ≤min{p, a/2}

}
.

Since dim S/I = 0, among the minimal set of generators G(I ) of I are the pure
powers xa1

1 , . . . , xan
n for suitable ai > 0. We let α= (a1, . . . , ap, 0, . . . , 0). Then

I≤α has all its generators in K [x1, . . . , x p] so that proj dim S/I = p. Let J be
the ideal which is generated by the set of monomials G(I ) \ {xa1

1 , . . . , xap
p }, and

let xβ be the least common multiple of the generators of J . Then J = I≤β

and (α, β) is a covering pair for I . Since J is generated by m− p elements it
follows that q = proj dim S/J ≤ m − p. Hence the desired inequality follows
from Corollary 7. The conditions on the integers a, m and p only make sure that
i ≥ 2 and a−i ≥ 2 for all i with p+a−m≤ i ≤ p, and that m−a+2≤ a−2. �

The bound in Corollary 8 is a partial improvement of the results in [Eisenbud
et al. 2006] and [McCullough 2012] since the bound is also valid for certain a<n.
For a= n, it is weaker than the one in [Eisenbud et al. 2006] for zero dimensional
rings and is stronger than the one in [McCullough 2012]. For example, if n = 7
and m = 8 one has t6 ≤ t1+ t2+ t3, and if 6≤ n ≤ 20 and m ≤ 2n− 6, then one
has t7 ≤ t1+ t2+ t4.
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Remark 9. With the same methods as applied in the proof of Theorem 5 one
can show the following statement: let I ⊂ S be a monomial ideal with graded
minimal free resolution F, and fi ∈ Fai multihomogeneous basis elements of
multidegree αi for i = 1, . . . , r . Assume that I =

∑r
i=1 I≤αi . Then

ta1+a2+···+ar (I )≤ ta1(I )+ ta2(I )+ · · ·+ tar (I ).

To satisfy the condition I =
∑r

i=1 I≤αi requires in general that either r is big
enough or that the αi are large enough (with respect to the partial order given by
componentwise comparison). Here is an example with r = 2 to which Remark 9
applies: let

I = (x2w2v2, a2x3 y2u2w2, a2z2u2, u2 y2z3, x3 y2z2)⊂ k[x, y, z, w, u, v, a].

The Betti numbers of R/I are 1, 5, 8, 5, 1. Even though the Betti sequence is
symmmetric, the ideal I is not Gorenstein, since it is of height 2 and projective
dimension 4. The two multidegrees in F2 which form a covering pair for I are
(3, 2, 2, 2, 2, 0, 2) and (2, 2, 3, 2, 2, 2, 0). In this example we have t1 = 11, t2 =
13, t3 = 15, t4 = 16 and we clearly have ti ≤ t2+ t2.
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