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Inequalities for Zonotopes
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Dedicated to Louis Billera on his sixtieth birthday

Abstract. We present two classes of linear inequalities that the flag f -

vectors of zonotopes satisfy. These inequalities strengthen inequalities for

polytopes obtained by the lifting technique of Ehrenborg.

1. Introduction

The systematic study of flag f -vectors of polytopes was initiated by Bayer and

Billera [1985]. Billera then suggested the study of flag f -vectors of zonotopes;

see the dissertation of his student Liu [1995]. The essential computational results

of the field appeared in two papers by Billera, Ehrenborg and Readdy [Billera

et al. 1997; 1998]. Here we present two classes of linear inequalities for the flag

f -vectors of zonotopes. These classes are motivated by our recent results for

polytopes [Ehrenborg 2005].

The flag f -vector of a convex polytope contains all the enumerative incidence

information between the faces of the polytope. For an n-dimensional polytope

the flag f -vector consists of 2n entries; in other words, the flag f -vector lies in

the vector space R
2n

. Bayer and Billera [1985] showed that the flag vectors of

n-dimensional polytopes span a subspace of R
2n

, called the generalized Dehn–

Sommerville subspace and denoted by GDSSn. Bayer and Klapper [1991] proved

that GDSSn is naturally isomorphic to the n-th homogeneous component of the

noncommutative ring R〈c,d〉, where the grading is given by deg c = 1 and

deg d = 2. Hence, the flag f -vector of a polytope P can be encoded by a

noncommutative polynomial Ψ(P ) in the variables c and d, called the cd-index.

The next essential step is to consider linear inequalities that the flag f -vector

of polytopes satisfy. The known linear inequalities are: the nonnegativity of the
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toric g-vector [Kalai 1987; Karu 2001; Stanley 1987], inequalities obtained by the

Kalai convolution [Kalai 1988], and that the cd-index is minimized coefficientwise

on the n-dimensional simplex Σn [Billera and Ehrenborg 2000]. Recently we

introduced in [Ehrenborg 2005] a lifting technique that allows one to use lower

dimensional inequalities to obtain higher-dimensional inequalities. Here is a

special case of this lifting technique:

Theorem 1.1. Let u, q and v be three cd-monomials such that the sum of the

degrees of u, q and v is n and the degree of q is k. Let ∆q denote the coefficient

of the cd-monomial q in the cd-index of a k-dimensional simplex Σk. Then for

all n-dimensional polytopes P we have
〈

u · (q − ∆q · c
k) · v | Ψ(P )

〉

≥ 0,

where the bracket 〈 · | · 〉 is the standard inner product on R〈c,d〉.

The purpose of this paper is to improve Theorem 1.1 for zonotopes.

Recall that a zonotope is a polytope obtained as the Minkowski sum of line

segments. The flag f -vectors of n-dimensional zonotopes lie in the subspace

GDSSn. Billera, Ehrenborg and Readdy [Billera et al. 1998] proved that they

do not lie in any proper subspace of GDSSn. They also showed that among all

n-dimensional zonotopes (and more generally, the dual of the lattice of regions of

oriented matroids), the n-dimensional cube minimizes the cd-index coefficient-

wise [Billera et al. 1997]. This is the zonotopal analogue of Stanley’s Gorenstein∗

lattice conjecture [Stanley 1994b, Conjecture 2.7].

We continue this vein of research by introducing further classes of linear in-

equalities for flag f -vectors of zonotopes. We develop two sharper versions of

the inequality appearing in Theorem 1.1. For an n-dimensional zonotope we

show that the expression in Theorem 1.1 is at least the value obtained by the

n-dimensional cube Cn; see Theorem 3.1. The second improvement is the case

when u = 1. We can replace the factor ∆q by a larger factor, the coefficient of

q in the cd-index of the k-dimensional cube Ck; see Theorem 3.6.

2. Preliminaries

For standard terminology for posets, see [Stanley 1986]. A partially ordered

set (poset) P is ranked if there is a rank function ρ : P → Z such that when x

is covered by y then ρ(y) = ρ(x) + 1. The poset P is graded of rank n if it is

ranked and has a minimal element 0̂ and a maximal element 1̂ such that ρ(0̂) = 0

and ρ(1̂) = n. Define the interval [x, y] to be the subposet {z ∈ P : x ≤ z ≤ y}.

Observe that the interval [x, y] is also a graded poset of rank ρ(y) − ρ(x).

Let P be a graded poset of rank n+1. For S = {s1 < s2 < · · · < sk} a subset

of {1, . . . , n}, define fS to be the number of chains 0̂ = x0 < x1 < · · · < xk+1 = 1̂,

where the rank of the element xi is si for 1 ≤ i ≤ k. These 2n values constitute

the flag f -vector of the poset P . Define the flag h-vector of P by the two



INEQUALITIES FOR ZONOTOPES 279

equivalent relations hS =
∑

T⊆S(−1)|S−T |fT and fS =
∑

T⊆S hT . There has

been a lot of recent work in understanding the flag f -vectors of graded posets

and Eulerian posets. For example, see [Bayer 2001; Bayer and Hetyei 2001;

Billera and Hetyei 2000].

For S a subset of {1, . . . , n} define the monomial uS = u1u2 · · ·un, where

ui = a if i 6∈ S and ui = b if i ∈ S. Define the ab-index of a graded poset P of

rank n + 1 to be the sum

Ψ(P ) =
∑

S

hS · uS.

A poset P is Eulerian if every interval [x, y], where x 6= y, has the same

number of elements of odd rank as the number of elements of even rank. This

condition states that every interval [x, y] satisfies the Euler–Poincaré relation.

The condition of being Eulerian is equivalent to the condition that the Möbius

function µ(x, y) is (−1)ρ(x,y). The two main examples of Eulerian posets are the

strong Bruhat order and face lattices of convex polytopes.

The following result was conjectured by Fine and proved by Bayer and Klapper

[1991]. It states that the generalized Dehn–Sommerville subspace GDSSn is

naturally isomorphic to the space of cd-polynomials of degree n.

Theorem 2.1. The ab-index of an Eulerian poset P , Ψ(P ), can be written in

terms of c = a + b and d = a · b + b · a.

When Ψ(P ) is expressed in terms of c and d it is called the cd-index of the

poset P . There exist several proofs of this result in the literature; see [Bayer

and Klapper 1991; Billera and Liu 2000; Ehrenborg 2001; Ehrenborg and Readdy

2002; Stanley 1994a]. The cd-index has been extraordinarily useful for flag vector

computations; see [Bayer and Ehrenborg 2000; Billera et al. 1997; Ehrenborg and

Readdy 1998]. Moreover, this basis is now emerging as a key tool for obtaining

linear inequalities for the entries of the flag f -vector; see [Billera and Ehrenborg

2000; Ehrenborg 2005; Ehrenborg and Fox 2003; Stanley 1994a].

Define an inner product 〈 · | · 〉 on R〈c,d〉 by 〈u | v〉 = δu,v for all cd-monomials

u and v, and extend this relation by linearity. Using this notation any linear

inequality on the flag f -vector of an n-dimensional polytope can be expressed as

〈H |Ψ(P )〉 ≥ 0, where H is homogeneous cd-polynomial of degree n.

In the remainder of this section we will focus upon the cd-index of zonotopes.

However, all the results carry over to oriented matroids. In order to keep the

statements of the results explicit, we will use the geometric language of zonotopes

and their hyperplane arrangements.

A zonotope Z is a polytope obtained by the Minkowski sum of line segments,

that is, Z = [0,v1] + · · · + [0,vm]. For each line segment [0,vi] let Hi be

the hyperplane through the origin that is orthogonal to vi. The collection of

these hyperplanes H = {H1, . . . ,Hm} is the central hyperplane arrangement

associated to the zonotope Z. The intersection lattice L of the arrangement H
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is the collection of all the intersections of the hyperplanes H1, . . . ,Hm ordered

by reverse inclusion.

Let ω be the linear map from R〈a, b〉 to R〈c,d〉 defined on an ab-monomial

by replacing each occurrence of ab with 2d and then replacing the remaining

variables by c. Here is the fundamental theorem for computing the cd-index of

a zonotope:

Theorem 2.2 [Billera et al. 1997]. Let Z be a zonotope (and more generally,

let Z be the dual of the lattice of regions of an oriented matroid). Let L be the

intersection lattice of the associated central hyperplane arrangement H and Ψ(L)

the ab-index of the lattice L. Then the cd-index of the zonotope and the sum of

the cd-indices of all the vertex figures of the zonotope are given by

Ψ(Z) = ω(a · Ψ(L)),
∑

v

Ψ(Z/v) = 2 · ω(Ψ(L)),

where v ranges over all vertices of the zonotope Z.

The first of these identities is [Billera et al. 1997, Theorem 3.1]. The second

follows from the first by using the linear map h defined in Section 8 of the same

reference.

It remains to compute the ab-index of the intersection lattice L. We do

this using R-labelings. For more details, see [Billera et al. 1997, Section 7]

and [Björner 1980; Stanley 1974; 1986]. Linearly order the hyperplanes in the

arrangement H as H = {H1, . . . ,Hm}. Mark each edge x ≺ y in the Hasse

diagram of the lattice L with the smallest (in the given linear order) hyperplane

H such that intersecting x with H gives y. That is,

λ(x, y) = min{i : x ∩ Hi = y}.

For a maximal chain c = {0̂ = x0 ≺ x1 ≺ · · · ≺ xn = 1̂} in the intersection

lattice L define its descent set D(c) by

D(c) = {i : λ(xi−1, xi) > λ(xi, xi+1)}.

Theorem 2.3 [Billera et al. 1997, Section 7]. The ab-index of intersection lattice

L is given by

Ψ(L) =
∑

c

uD(c),

where the sum ranges over all maximal chains c in the lattice L.

3. Inequalities for Zonotopes

In this section we will improve Theorem 1.1 for zonotopes. Let Cn denote the

n-dimensional cube.
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Theorem 3.1. Let Z be an n-dimensional zonotope (and more generally, let

Z be the dual of the lattice of regions of an oriented matroid). Let q be a cd-

monomial of degree k that contains at least one d. Then the cd-index Ψ(Z)

satisfies the inequality

〈

u ·
(

q − ∆q · c
k
)

· v | Ψ(Z) − Ψ(Cn)
〉

≥ 0.

for any two cd-monomials u and v such that deg u + deg v = n − k.

Definition 3.2. Let q be a cd-monomial of degree k that contains at least

one d. For two cd-polynomials z and w define the order relation z �q w if the

inequality
〈

u · (q − ∆q · c
k) · v |w − z

〉

≥ 0 holds for all cd-monomials u and v.

In this notation Theorem 3.1 becomes Ψ(Z) �q Ψ(Cn) and that of Theorem 1.1

becomes Ψ(P ) �q 0. Note that this order relation differs slightly from the order

relation used in [Ehrenborg 2005].

Lemma 3.3. Let z and w be nonnegative cd-polynomials such that z �q 0 and

w �q 0. Then we have z · d · w �q 0.

Proof. Without loss of generality, we may assume that z and w are homoge-

neous polynomials. We would like to prove that

〈

u · (q − ∆q · c
k) · v | z · d · w

〉

≥ 0,

for all cd-monomials u and v such that deg u + deg v = deg(zdw) − k, where k

is the degree of q. We do this in three cases. The first case is deg(uc
k) ≤ deg z.

Try to factor v = v1 · v2 such that deg(uc
kv1) = deg z. If such factoring is not

possible, both sides of the inequality are equal to zero. If factoring is possible

then
〈

u(q − ∆qc
k)v | zdw

〉

=
〈

u(q − ∆qc
k)v1 | z

〉

· 〈v2 |dw〉 ≥ 0. The second case

is deg u ≥ deg(zd), which is symmetric to the first case.

The third is deg(uc
k) > deg z and deg u < deg(zd). Since z and w have

nonnegative coefficients we have 〈uqv | zdw〉 ≥ 0. Moreover,
〈

uc
kv | zdw

〉

= 0.

This completes the third case. ˜

Proposition 3.4. Let Z be an n-dimensional zonotope and let Z ′ be the zono-

tope obtained by taking the Minkowski sum of Z with a line segment in the affine

span of Z. Then we have Ψ(Z ′) �q Ψ(Z).

Proof. Let H and H′ be the associated hyperplane arrangements and let H

be the new hyperplane. Let H′ inherit the linear order of H with the new

hyperplane H inserted at the end of the linear order. Similarly, let L and L′ be

the corresponding intersection lattices. Observe that every maximal chain in L

is also a maximal chain in L′. Also observe that there is no maximal chain in

L′ whose last label is H. Hence the difference in the ab-indices between the two
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intersection lattices is

Ψ(L′) − Ψ(L) =
∑

c

uD(c)

=
∑

0̂<x≺y

Ψ([0̂, x]) · ab · Ψ([y, 1̂]) +
∑

0̂=x≺y

b · Ψ([y, 1̂]),

where the sum on the first line is over all maximal chains c containing the label

H and the sums on the second line are over edges x ≺ y in the Hasse diagram

of L′ having the label H. Applying the map w 7−→ ω(a · w) we obtain

Ψ(Z ′)−Ψ(Z) =
∑

0̂<x≺y

ω(a·Ψ([0̂, x]))·2d·ω(Ψ([y, 1̂]))+
∑

0̂≺y

2d·ω(Ψ([y, 1̂])). (3.1)

The term ω(a ·Ψ([0̂, x])) is the cd-index of a zonotope and hence is nonnegative

in the order �q by Theorem 1.1. Similarly, the term ω(Ψ([y, 1̂])) is one half

of the sum of cd-indices of the vertex figures of a zonotope and hence is also

�q-nonnegative. The result now follows by Lemma 3.3 and the property that

the order �q is preserved under addition. ˜

Proof of Theorem 3.1. Observe that any n-dimensional zonotope is obtained

from the n-dimensional cube Cn by Minkowski adding line segments. Thus the

result follows from Proposition 3.4. ˜

The second improvement of the zonotopal inequalities is when comparing the

coefficients of c
kv and qv, that is, when u is equal to 1. Let ˜q denote the

coefficient of the monomial q in the cd-index of the k-dimensional cube Ck, that

is, ˜q = 〈q |Ψ(Ck)〉. For ease in notation, we introduce a second order relation.

Definition 3.5. Let q be a cd-monomial of degree k that contains at least one d

and let z and w be two cd-polynomials. Define the order relation z �′
q w on the

cd-polynomials z and w by
〈

(q − ˜q · c
k) · v |w − z

〉

≥ 0 for all cd-monomials v.

Theorem 3.6. Let Z be an n-dimensional zonotope (and more generally, let

Z be the dual of the lattice of regions of an oriented matroid). Let q be a cd-

monomial of degree k that contains at least one d. Then the cd-index Ψ(Z)

satisfies the inequality Ψ(Z) �′
q Ψ(Cn). That is, for all cd-monomials v of

degree n − k we have
〈

(q − ˜q · c
k) · v | Ψ(Z) − Ψ(Cn)

〉

≥ 0.

The proof of Theorem 3.6 consists of the following lemma and two propositions.

Lemma 3.7. Let z and w be two nonnegative cd-polynomials such that z �′
q 0.

Then we have z ·d ·w �′
q 0. Furthermore if deg q ≤ deg z we have that z ·w �′

q 0.

Proof. We want to show that
〈

(q − ˜qc
k)v | zdw

〉

≥ 0 for all cd-monomials v,

where k = deg q. Consider first the case when k ≤ deg z. Try to write v = v1 · v2



INEQUALITIES FOR ZONOTOPES 283

such that k+deg v1 = deg z. If this is not possible both sides are equal to zero. If

this is possible we have
〈

(q − ˜qc
k)v | zdw

〉

=
〈

(q − ˜qc
k)v1 | z

〉

· 〈v2 |dw〉 ≥ 0.

The second case is k > deg z. Then right away we have
〈

c
kv | zdw

〉

= 0. Also

〈qv | zdw〉 ≥ 0, since both z and w have nonnegative coefficients. The second

statement of the lemma is proved by similar reasoning, where there is only the

case
〈

(q − ˜qc
k)v | zw

〉

=
〈

(q − ˜qc
k)v1 | z

〉

· 〈v2 |w〉 ≥ 0. ˜

Proposition 3.8. The cd-index of the n-dimensional cube Cn satisfies

Ψ(Cn) �′
q 0.

Proof. The proof is by induction on n. Observe that when n < deg q there

is nothing to prove. When n = deg q the result is directly true. The induction

step is based on the Purtill recursion for the cd-index of the n-dimensional cube;

see [Ehrenborg and Readdy 1996; Purtill 1993] or [Ehrenborg and Readdy 1998,

Proposition 4.2]:

Ψ(Cn+1) = Ψ(Cn) · c +
n−1
∑

i=0

2n−i ·

(

n

i

)

· Ψ(Ci) · d · Ψ(Σn−i−1).

By Lemma 3.7 we observe that all the terms in this expression are greater than

0 in the order �′
q. ˜

Proposition 3.9. Let Z be an n-dimensional zonotope and let Z ′ be the zono-

tope obtained by taking the Minkowski sum of Z with a line segment in the affine

span of Z. Assume that all zonotopes W of dimension n− 1 and less satisfy the

relation 0 �′
q Ψ(W ). Then the order relation Ψ(Z) �′

q Ψ(Z ′) holds.

Proof. The proof follows the same outline as the proof of Proposition 3.4. By

Lemma 3.7 each term in equation (3.1) is nonnegative in the order �′
q. Since the

property of being nonnegative is preserved under addition, the result follows. ˜

Proof of Theorem 3.6. We work by induction. The case n = 0 is straight-

forward. For the induction step assume that every zonotope W of dimension k

less than n satisfies the inequality Ψ(Ck) �′
q Ψ(W ). Especially, we know that

the cd-index of a lower dimensional zonotope is nonnegative in the order �′
q.

Thus by Proposition 3.9 we know that Ψ(Z) �′
q Ψ(Z ′) holds for n-dimensional

zonotopes. Now the theorem follows from Propositions 3.8. ˜

4. Concluding Remarks

In the view of the lifting technique in [Ehrenborg 2005], it is natural to consider

the following conjecture.

Conjecture 4.1. Let H be a cd-polynomial homogeneous of degree k such that

〈H | Ψ(P )〉 ≥ 0 for all k-dimensional polytopes P . Then for all n-dimensional
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zonotopes (and more generally, the dual of the lattice of regions of an oriented

matroid) the inequality
〈

u · H · v | Ψ(Z) − Ψ(Cn)
〉

≥ 0

holds for all cd-monomials u and v such that the sum of their degrees is n − k,

u does not end with c and v does not begin with c.

Conjecture 4.1 is the zonotopal analogue of Conjecture 6.1 in [Ehrenborg 2005].

Theorem 3.1 is the verification of Conjecture 4.1 in the case when H = q−∆q ·c
k.

Moreover, in the light of Theorem 3.6 we also suggest the next conjecture.

Conjecture 4.2. Let H be a cd-polynomial homogeneous of degree k such that

for all k-dimensional zonotopes Z (and more generally, the dual of the lattice

of regions of an oriented matroid) the inequality 〈H | Ψ(Z) − Ψ(Ck)〉 ≥ 0 holds.

Then for all n-dimensional zonotopes (oriented matroids) the inequality
〈

H · v | Ψ(Z) − Ψ(Cn)
〉

≥ 0

holds for all cd-monomials v of degree n − k.

There are other natural questions that arise. For instance, is there a way to

interpolate between Theorems 3.1 and 3.6? Such an interpolation would let

the factor vary between the constants ∆q and ˜q, depending on the degree of

the monomial u. Another inequality to consider is the following multiplicative

version of Theorem 3.1:

Conjecture 4.3. The cd-index of a zonotope Z (and more generally, the dual

of the lattice of regions of an oriented matroid) satisfies the inequality
〈

uqv |Ψ(Z)
〉

〈

uckv |Ψ(Z)
〉 ≥

〈

uqv |Ψ(Cn)
〉

〈

uckv |Ψ(Cn)
〉 .

More linear inequalities for the flag f -vector of zonotopes can be obtained by

the Kalai convolution [1988]. That is, if the two inequalities 〈H1 |Ψ(Z)〉 ≥ 0

and 〈H2 |Ψ(P )〉 ≥ 0 hold for all m-dimensional zonotopes, respectively all n-

dimensional polytopes, then the inequality 〈H1 ∗ H2 |Ψ(Z)〉 ≥ 0 holds for all

(m+n+1)-dimensional zonotopes. For an explicit description of the convolution

on cd-polynomials, see [Ehrenborg 2005, Proposition 2.2].

Finally, another class of linear inequalities for the flag f -vector of zonotopes

have been obtained by Varchenko and Liu; see [Fukuda et al. 1991; Liu 1995;

Varchenko 1988]. Recently, this class has been sharpened by Stenson [2003].
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