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Edge-Antipodal 3-Polytopes

KÁROLY BEZDEK, TIBOR BISZTRICZKY, AND KÁROLY BÖRÖCZKY

Abstract. A convex 3-polytope in E
3 is called edge-antipodal if any two

vertices, that determine an edge of the polytope, lie on distinct parallel

supporting planes of the polytope. We prove that the number of vertices

of an edge-antipodal 3-polytope is at most eight, and that the maximum is

attained only for affine cubes.

1. Introduction

Let X be a set of points in Euclidean d-space Ed. Then conv X and aff X

denote, respectively, the convex hull and the affine hull of X.

Two points x and y are called antipodal points of X if there are distinct parallel

supporting hyperplanes of conv X, one of which contains x and the other contains

y. We say that X is an antipodal set if any two points of X are antipodal points

of X. In the case that X is a convex d-polytope P , a related notion was recently

introduced in [Talata 1999]. P is an edge-antipodal d-polytope if any two vertices

of P , that lie on an edge of P , are antipodal points of P .

According to a well-known result of Danzer and Grünbaum [1962], conjectured

independently by Erdős [1957] and Klee [1960], the cardinality of any antipodal

set in Ed is at most 2d. Talata [1999] conjectured that there exists a smallest pos-

itive integer m such that the cardinality of the vertex set of any edge-antipodal

3-polytope is at most m. In an elegant paper, Csikós [2003] showed that m ≤ 12.

In this paper, we prove that m = 8.

Theorem. The number of vertices of an edge-antipodal 3-polytope P is at most

eight , with equality only if P is an affine cube.
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We remark that with some additional case analysis, it can be deduced from

the proof of the Theorem that the vertex set of P is in fact antipodal. This is

not the case for edge-antipodal d-polytopes Pd when d ≥ 4 (see [Talata 1999] for

d = 4), and thus, it seems highly challenging to determine the higher dimensional

analogue of the Theorem. We note that Pór [2005] has shown that for each d ≥ 4,

there exists an integer m(d), formula unknown, such that Pd has at most m(d)

vertices.

2. Proof of the Theorem

For sets X1, X2, . . . , Xn in E3, let [X1, X2, . . . , Xn] be the convex hull of

X1 ∪ X2 ∪ · · · ∪ Xn, and 〈X1, X2, . . . , Xn〉 the affine hull of X1 ∪ X2 ∪ · · · ∪ Xn.

For a point x, set [x] = [{x}] and 〈x〉 = 〈{x}〉.

For a point x and a line L in E3, let `(x, L) denote the line through x that

is parallel to L. Likewise, if H is a plane in E3, let h(x,H) denote the plane

through x that is parallel to L.

Let P ⊂ E3 denote a (convex) 3-polytope with the set V(P ) of vertices, the

set E(P ) of edges and the set F(P ) of facets. We recall that by Euler’s Theorem,

|V(P )| − |E(P )| + [F(P )] = 2.

Let v ∈ V(P ). Then v has degree k (deg v = k) if v is incident with exactly k

edges of P . It is a consequence of Euler’s Theorem (cf. [Fejes Tóth 1953]) that

the average degree of a vertex of P is less than six, and thus,

Remark 1. Any 3-polytope contains a vertex of degree k with k ≤ 5.

Next, let

S = {v1, v2, . . . , vn, vn+1 = v1} ⊂ V(P ),

where n ≥ 3. We say that [S] is a contour section of P if dim〈S〉 = 2, [S] is not

a facet of P and [vi, vi+1] ∈ E(P ) for i = 1, . . . , n.

Finally, let v and w be antipodal vertices of P . When there is no danger of

confusion, we denote by Hw
v and Hv

w, the distinct parallel supporting planes of

P such that v ∈ Hw
v and w ∈ Hv

w.

Henceforth, we assume that P is edge-antipodal. Thus, if [v, w] ∈ E(P ) then

v and w are antipodal.

We begin our arguments with some simple observations concerning a paral-

lelogram Q = [w, x, y, z] with sides [w, x] and [x, y] :

Remark 2. If {[w, x] , [x, y]} ⊂ E(P ) then 〈w, z〉 and 〈y, z〉 are supporting lines

of P , and 〈Q〉 ∩ P ⊂ Q.

Remark 3. If [x,w, y, v] ⊆ Q ∩ P and [w, v] ∈ E(P ) then v ∈ [y, z].

From these two remarks, we deduce:
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Remark 4. Any facet or any contour section of P is a triangle or a parallelo-

gram.

We examine now P when it is nonsimplicial or simplicial, and determine when

a subpolytope of P is necessarily edge-antipodal.

Lemma 1. Let F = [w, x, y, z] ∈ F(P ) be a parallelogram with sides [w, x] and

[x, y], and let H be a plane such that H ∩F = [x, y] and v ∈ (H ∩V(P )) \ {x, y}.

1.1 If H ∩ P is a contour section of P then H ∩ P is a parallelogram.

1.2 If H ∩ P is a facet of P then h(v, 〈F 〉) is a supporting plane of P .

Proof. We suppose that H ∩ P = [x, y, v] is a contour section, and seek a

contradiction.

Let L = 〈y, z〉 and R = [F, v, p] where p is the point on `(v, L) such that

Q = [v, y, z, p] and Q′ = [v, x, w, p] are parallelograms. Next, H ∩ P /∈ F(P )

implies that there is a u ∈ V(P ) such that H separates u and R, and [u, y] ∈ E(P ).

We have now a contradiction by Remark 2. On the one hand; 〈Q〉 ∩ P ⊆ Q and

〈Q′〉 ∩P ⊆ Q′, and so `(u, L) meets the relative interior of H ∩P . On the other

hand; `(u, L) is a supporting line of P .

Let H ∩ P ∈ F(P ). By Remark 4, H ∩ P is a parallelogram or a triangle.

If H ∩ P = [v, x, y, u] is a parallelogram with sides, say, [v, x] and [x, y] then

Hv
x ∩ [v, x, y, u] = [x, y] and Hx

v ∩ [v, x, y, u] = [v, u]

by Remark 2, and from this it follows that h(v, 〈F 〉) supports P . If H ∩ P =

[v, x, y] then the assertion is immediate in the case that Hv
x = 〈F 〉, and it is easy

to check that Hv
x 6= 〈F 〉 6= Hv

y yields h (v, 〈F 〉) ∩ P ⊆ `(v, L). ˜

Lemma 2. Let P be simplicial and v ∈ V(P ). Then deg v 6= 5.

Proof. We suppose that [v, vi, vi+1] ∈ F(P ) for i = 1, . . . , 5 with v6 = v1, and

seek a contradiction.

Let P̃ = [v, v1, . . . , v5]. If v1, v2, . . . , v5 are coplanar then [v1, . . . , v5] ∈ F(P̃ ),

E(P̃ ) ⊂ E(P ) and P is edge-antipodal; a contradiction by Remark 4.

Let, say, [v1, v2, v3, v4] ∈ F(P̃ ). Then H = 〈v1, v2, v5〉 strictly separates v

and [v3, v4], and with H ∩ 〈v, vj〉 = {uj} for j ∈ {3, 4}, H ∩ P is a pentagon

with cyclically labelled vertices v1, v2, u3, u4, v5. By Remark 2, `(v5, 〈v1, v2〉) is

a supporting line of H ∩ P . Since v1, v2, v3 and v4 are coplanar, we obtain also

from Remark 2 that L′ = `(v3, 〈v1, v2〉) is a supporting line of P . Then

{[v, v2, v3] , [v, v3, v4]} ⊂ F(P )

yields that H ′ = 〈v, L′〉 is a supporting plane of P , and H ∩ H ′ is a supporting

line of H ∩ P . Since u3 ∈ H ∩ H ′ and the lines H ∩ H ′ and `(v5, 〈v1, v2〉) are

parallel, we obtain that {u3, u4, v5} ⊂ H ′ and v, v3, v4 and v5 are coplanar; a

contradiction.
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Since P̃ is simplicial, there is an edge among the [vi, vi+1]’s such that neither

[vi−1, vi, vi+1] nor [vi, vi+1, vi+2] is a face of P̃ . Let, say,

[v2, v3, v5] ∈ F(P̃ ).

Then each of 〈v1, v2, v3〉 and 〈v2, v3, v4〉 strictly separates v and v5, and we may

assume that H = 〈v1, v2, v3〉 separates v and v4. Hence, with H ∩ 〈v, vj〉 = {uj}

for j ∈ {4, 5}, the intersection H∩P̃ is a pentagon with cyclically labelled vertices

v1, v2, v3, u4, u5. We apply now Remark 2 with 〈v1, v2, v3〉 and 〈v2, v3, v4〉, and

obtain that `(v1, 〈v2, v3〉) and `(v4, 〈v2, v3〉) are supporting lines of P̃ . This yields

directly that `(v1, 〈v2, v3〉) and `(u4, 〈v2, v3〉) are parallel supporting lines of the

pentagon H ∩ P̃ . Then v1, u4 and u5 are collinear, and v, v1, v4 and v5 are

coplanar; a contradiction. ˜

Lemma 3. Let {w, v1, v2, v3, v4, v5 = v1} ⊂ V(P ) such that [w, vi, vi+1] ∈ F(P )

for i = 1, 2, 3, 4. Then Pw = [V(P ) \ {w}] is edge-antipodal .

Proof. Since the assertion is immediate in the case that E(Pw) ⊂ E(P ), we

may assume that the vi’s are not coplanar and that, say,

E(Pw) \ E(P ) = {[v1, v3]} .

Let H = 〈w, v1, v3〉, U = 〈v2, v4〉, Q = [w, v1, v3, p] be the parallelogram with

sides [w, v1] and [w, v3], and Hw and H1 be distinct parallel supporting planes

of P such that w ∈ Hw and v1 ∈ H1. We assume that v3 /∈ Hw and observe that

with (v2, v4) = [v2, v4] \ {v2, v4}:

(i) H ∩ U ∈ H ∩ P ⊆ Q by Remark 2;

(ii) Hw ∩ Q = {w} and H1 strictly separates v3 and p;

(iii) 〈w, v1, u〉 and 〈w, v3, u〉 are supporting planes of P for each u ∈ U \ (v2, v4);

(iv) H ∩ Hw and H ∩ H1 are supporting lines of the projection of P upon H

along the direction of any line contained in Hw or H1.

Let Hw ∩ U be the point ū, Ū = 〈w, ū〉 and P̄ be the projection of P upon H

along Ū .

Since ū ∈ U \ (v2, v4), it follows from (iii) that 〈w, v1〉 and 〈w, v3〉 are sup-

porting lines of P̄ . Since Ū ⊂ Hw, it follows from (iv) that H ∩ H1 supports P̄ .

But then 〈v1, p〉 supports P̄ by (ii), and consequently, 〈w, v3, ū〉 and 〈`(v1, Ū), p〉

are parallel supporting planes of P, and hence of Pw.

In the case that Hw ∩U = ?, letting figuratively ū ∈ U tend to infinity yields

that 〈`(w,U), v3〉 and 〈`(v1, U), p〉 are parallel supporting planes of P , and hence

of Pw. ˜

Corollary. Let P be simplicial and w ∈ V(P ) be such that deg w ≤ 4. Then

Pw = [V(P ) \ {w}] is edge-antipodal .

We are now ready to proceed with the proof of the Theorem.
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If P is not simplicial then by Remark 4, there is a parallelogram F ∈ F(P ).

By 1.2, there is a plane H, parallel to 〈F 〉 and supporting P , that contains any

vertex of P \ F that is in an F ′ ∈ F(P ) such that F ′ ∩ F ∈ E(P ). From this

and Remark 2, it readily follows that H contains any vertex v of P \F such that

[v, x] ∈ E(P ) for some vertex x of F . Hence, V(P ) ⊂ H ∪ 〈F 〉 and |V(P )| ≤ 8 by

Remark 4. We note that in this case, the degree of any vertex of P is at most

four.

Let P be simplicial. If the degree of any vertex of P is at most four, we have

3 |F(P )| = 2 |E(P )| ≤ 4 |V(P )| ,

and it follows from Euler’s Theorem that |V(P )| ≤ 6.

We suppose that there is a w ∈ V(P ) such that deg w > 4. Then deg w ≥ 6

by Lemma 2. From Remark 1, there is a v0 ∈ V(P ) such that deg v0 ≤ 4. By the

Corollary, P0 = [V(P ) \ {v0}] is edge-antipodal. We note that w ∈ V(P0) and

deg w ≥ 5. Thus, P0 is simplicial by the preceding, and deg w ≥ 6 by Lemma 2.

Since each iteration of the above yields a simplicial edge-antipodal subpoly-

tope of P with w as a vertex, we have a contradiction.

Finally, we remark that if P is strictly edge-antipodal (meaning that whenever

[v, w] ∈ E(P ), there exist Hw
v and Hv

w such that Hw
v ∩ P = {v} and Hv

w ∩ P =

{w}), then |V(P )| ≤ 5. This follows from the Theorem (P is necessarily simpli-

cial, V(P ) is antipodal and |V(P )| ≤ 6) and the result of Grünbaum [1963] that

there is no strictly antipodal set of six points in E3.
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[Fejes Tóth 1953] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum,
Grundlehren der Mathematischen Wissenschaften 65, Springer, Berlin, 1953.
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