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Abstract. We generalize the Hadwiger theorem on line transversals to

collections of compact convex sets in the plane to the case where the sets

are connected and the transversals form an arrangement of pseudolines.

The proof uses the embeddability of pseudoline arrangements in topological

affine planes.

Santaló [1940] showed, by an example, that Vincensini’s proof [1935] of an

extension of Helly’s theorem was incorrect. Vincensini claimed to have proved

that for any finite collection S of at least three compact convex sets in the plane,

any three of which are met by a line, there must exist a line meeting all the sets.

This would have constituted an extension of the planar Helly theorem [Helly

1923] to the effect that the same assertion holds if “line” is replaced by “point.”

The Santaló example was later extended by Hadwiger and Debrunner [1964] to

show that even if the convex sets are disjoint the conclusion still may not hold.

In 1957, however, Hadwiger showed that the conclusion of the theorem is

valid if the hypothesis is strengthened by imposing a consistency condition on

the order in which the triples of sets are met by transversals:

Theorem [Hadwiger 1957]. If B1, . . . , Bn is a family of disjoint compact convex

sets in the plane with the property that for any 1 ≤ i < j < k ≤ n there is a

line meeting each of Bi, Bj , Bk in that order , then there is a line meeting all the

sets Bi.

In [Goodman and Pollack 1988] two of us gave a generalization of Hadwiger’s

theorem to the case of hyperplane transversals, and this in turn was extended in

[Pollack and Wenger 1990; Wenger 1990], culminating in the following result:
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Theorem [Anderson and Wenger 1996]. Let A be a finite collection of connected

sets in R
d. A has a hyperplane transversal if and only if for some k with 0 ≤

k < d there exists a rank k +1 acyclic oriented matroid structure on A such that

every k + 2 members of A are met by an oriented k-flat consistently with that

oriented matroid structure.

Our purpose in this paper is to extend the original Hadwiger theorem in a dif-

ferent direction— replacing “lines” by “pseudolines.” A pseudoline in the affine

plane is simply the homeomorphic image of a line. If that were all, the theorem

would be true trivially: for any finite collection of sets there is a pseudoline meet-

ing them in any prescribed order! (Of course this needs a suitable interpretation

in the case where the sets are not mutually disjoint; see below.) But to reflect

more accurately the properties of sets of lines in the plane, one insists that all the

pseudolines under consideration form an arrangement , which means that they

are finite in number, that any two meet exactly once, where they cross, and (for

technical reasons) that they do not all pass through the same point.1 (For exam-

ples of pseudoline arrangements that are not isomorphic, in a natural sense, to

arrangements of straight lines, see, e.g., [Goodman 2004].) Furthermore, given

a pseudoline arrangement A we say that a pseudoline l extends A if A ∪ {l} is

also an arrangement of pseudolines. Thus the theorem we are going to prove is

the following:

Theorem 1. Suppose B1, . . . , Bn is a family of connected compact sets in the

plane such that for each 1 ≤ i < j < k ≤ n there is a pseudoline lijk meeting each

of Bi, Bj , Bk at points pi, pj , pk, not necessarily distinct , contained in Bi, Bj , Bk,

respectively , with pj lying between pi and pk on lijk. Suppose further that the

pseudolines lijk constitute an arrangement A. Then there exists a pseudoline l

that extends the arrangement A and meets each set Bi.

As in Wenger’s generalization [1990], we do not assume the sets to be disjoint

or even convex, merely connected. And in fact we will prove Theorem 1 by

generalizing Wenger’s proof, and by using the following result on topological

planes:

Theorem [Goodman et al. 1994]. Any arrangement of pseudolines in the pro-

jective plane can be extended to a topological projective plane.

Here a topological projective plane means P
2, together with a distinguished col-

lection L of pseudolines, one for each pair of points, varying continuously with

the points, any two meeting (and crossing) exactly once. If we call a topological

projective plane with one of its distinguished pseudolines removed a topological

affine plane (TAP), the theorem above can trivially be modified to read: Any

1This is actually the definition of a “pseudoline arrangement” in the projective plane, while

in the affine plane one allows pseudolines also to be “parallel”; in a finite arrangement, however,

pseudolines can always be perturbed slightly to meet “at finite distance,” and we will assume

this whenever convenient.
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arrangement of pseudolines in the affine plane can be extended to a TAP . We

will use it in this form.

For background on pseudoline arrangements and on geometric transversal

theory, the reader may consult the following surveys: [Eckhoff 1993; Goodman

2004; Goodman et al. 1993; Grünbaum 1972; Wenger 1999; Wenger 2004].

We now introduce some notions that will be used in the proof of the theorem.

Since P
2 can be modeled by a closed circular disk ∆ with antipodal points on

the boundary ∂∆ identified, we will model our TAP by using int ∆, the interior

of ∆, and call two pseudolines parallel if they meet on ∂∆. (From now on,

whenever we speak of “pseudolines” in the TAP, we will mean members of the

distinguished family of pseudolines constituting its “lines.”) An arrangement of

pseudolines is thus a finite set of Jordan arcs, each joining a pair of antipodal

points of ∂∆, any two meeting (and crossing) exactly once, or possibly at their

endpoints (the parallel case).

We will also speak of directed pseudolines, which corresponds to specifying

one of the antipodal points where the pseudoline meets ∂∆. Thus it will make

sense to say: let p be a point on ∂∆ and let lp be a pseudoline in the direction p.

Further, when we direct a pseudoline, we specify a positive and a negative open

half-space bounded by that line, determined with respect to a fixed orientation

of ∆. We denote these half-spaces by H+(lp) and H
−

(lp); see Figure 1.

Now let A and B be two connected compact sets in our TAP and let p ∈ ∂∆.

If there is a pseudoline in the direction of p that contains points a ∈ A and

b ∈ B, with either a = b or a preceding b on the pseudoline, we say that p is an

(AB)-transversal direction. If there is a pseudoline lp that strictly separates A

and B such that A ⊂ H+(lp) and B ⊂ H
−

(lp), we say that p is a (AB)-separating

direction.

Notice that a given direction can be both an (AB)-transversal direction and a

(BA)-transversal direction; even the same pseudoline, in fact, can meet A before

B and B before A in this sense.

H+(lp)

lp

H
−

(lp)

∂∆

p

Figure 1.
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Notice also that given a pair A,B, each direction p is either a transversal

direction or a separating direction for A,B, but not both; this follows by a simple

continuity argument, sweeping a pseudoline in direction p across the TAP.

Finally, notice that if there is an (AB)-separating direction p, no direction

q can be both an (AB)-transversal direction and a (BA)-transversal direction.

This follows from the fact that if two pseudolines have the same direction q, they

must cross a given pseudoline l in direction p the same way: both from H+(l) to

H
−

(l), or both from H
−

(l) to H+(l).

It then follows from the definition of a TAP and the compactness of our sets

that the set TAB of (AB)-transversal directions is a closed arc of ∂∆: If A and

B have a point in common then clearly TAB = ∂∆. If not, consider any two

distinct directions p1, p2 ∈ TAB. For i = 1, 2 choose points ai ∈ A, bi ∈ B along

a pseudoline li in direction pi, with ai preceding bi, as well as a parametrized

arc a(t) ⊂ A from a1 to a2 and a parametrized arc b(t) ⊂ B from b1 to b2. By

continuity, the set of directions
−−−−−→
a(t)b(t) must contain one of the two arcs on ∂∆

joining p1 and p2. It follows that the set TAB is itself an arc (possibly all of ∂∆),

and this must be closed by the compactness of the sets A and B.

We have thus proved the following:

Lemma 2. Let A and B be connected compact sets in the plane. Then

∂∆ = TAB ∪ SAB ∪ TBA ∪ SBA,

where TAB = −TBA is the closed arc corresponding to the (AB)-transversal di-

rections, and SAB = −SBA is the open arc corresponding to the (AB)-separating

directions. (Note that SAB can be empty .)

To complete the proof of Theorem 1, we extend the arrangement A to a topo-

logical affine plane. We want to show first that there is a direction p ∈ ∂∆ that

is a transversal direction for every pair Bi, Bj . For each pair Bi, Bj , let Sij be

the open arc of (BiBj)-separating directions. Now define the following antipodal

sets:

S+ =
⋃

i<j

Sij , S
−

=
⋃

i<j

Sji .

If there is no point p ∈ ∂∆ that is a transversal direction for every pair Bi, Bj

then we must have ∂∆ = S+ ∪S
−

. But since S+ and S
−

are open sets that cover

∂∆ there must be a point p ∈ S+ ∩ S
−

. But then we would have pseudolines l1
and l2, both directed toward p, and sets Bi, Bj , Bk, Bl with i < j and k < l, such

that Bi ⊂ h+(l1), Bj ⊂ h
−

(l1), Bk ⊂ h
−

(l2), and Bl ⊂ h+(l2). It is then easy

to check that there would always be some triple that violates the transversal

assumption; see Figure 2 for a typical case.

This means that there is a direction q ∈ ∂∆ that is a transversal direction

for every pair Bi, Bj . It follows that q is not a separating direction for any pair

Bi, Bj , so that a pseudoline in direction q sweeping through the TAP must pass

simultaneously through all the sets Bi at some point. This completes the proof.
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Bi

Bj

Bl

Bk

l1 l2

p

Figure 2. If i < k, there is no likl; if k < i, there is no lkij .

Remarks. 1. It is not hard to see that Theorem 1 is equivalent to the following.

Theorem 3. Suppose L is an arrangement of pseudolines in the affine plane.

For each triple i < j < k in [1, n], select three (not necessarily distinct) points

belonging to the same pseudoline of L, and label them i, j, k, with the point labeled

j between the other two (or possibly equal to one or both). Then there is a

pseudoline l extending the arrangement L such that for each i ∈ [1, n] there are

points labeled i in both (closed) half-spaces bounded by l.

2. As in the original Hadwiger theorem, one cannot strengthen the conclusion

of Theorem 1 to include the assertion that the common transversal meets the

sets in the order 1, 2, . . . , n (see [Wenger 1990] for an example). But it is easily

seen that, as in [Wenger 1990], that stronger assertion follows if we are willing

to assume that every six of the sets are met in a consistent order; the argument

is the same, mutatis mutandis.

Theorem 4. Suppose B1, . . . , Bn is a family of at least six connected com-

pact sets in the plane such that for each 1 ≤ f < g < h < i < j < k ≤ n

there is a pseudoline lfghijk meeting each of Bf , Bg, Bh, Bi, Bj , Bk at points

pf , pg, ph, pi, pj , pk, not necessarily distinct , contained in Bf , Bg, Bh, Bi, Bj , Bk,

respectively , and occurring in that order on lfghijk. Suppose further that the

pseudolines lfghijk constitute an arrangement A. Then there exists a pseudoline

l that extends the arrangement A and meets all of the sets B1, . . . , Bn in that

order .

The example in [Wenger 1990] showing that the number 6 in the corresponding

result for straight lines and convex sets is tight does not seem correct. Here is an

example, however, showing that the result would fail for a collection B1, . . . , B6

of convex sets if we assumed only that every five were met in a consistent order;

here every five sets have a transversal meeting them in numerical order, but all
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six do not:

1

2

3

4

6

5

3. In the process of proving Theorem 1, we have actually proven the following

(stronger) theorem about TAPs:

Theorem 5. If B1, . . . , Bn is a family of connected compact sets in a topological

affine plane P with the property that for any 1 ≤ i < j < k ≤ n there is a pseudo-

line of P meeting each of Bi, Bj , Bk in that order , then there is a pseudolineline

of P meeting all the sets Bi.

This raises the question: What other transversal theorems extend to TAPs?

4. Finally, what about higher dimensions? The notion of ‘topological plane’

extends only trivially to dimension ≥ 3, since, as is well-known, Desargues’s the-

orem holds automatically in higher dimensions and any d-dimensional “topologi-

cal projective space” is consequently isomorphic to the usual projective space P
d.

Nevertheless, one may ask: Does Theorem 1 extend in some way, in dimension

> 2, to a result about (finite) arrangements of pseudohyperplane transversals?
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